TD-DFT study of the light-induced spin crossover of Fe(III) complexes.
نویسندگان
چکیده
Two light-induced spin-crossover Fe(III) compounds have been studied with time-dependent density functional theory (TD-DFT) to investigate the deactivation mechanism and the role of the ligand-field states as intermediates in this process. The B3LYP* functional has previously shown its ability to accurately describe (light-induced) spin-crossover in Fe(II) complexes. Here, we establish its performance for Fe(III) systems using [Fe(qsal)2](+) (Hqsal = 2-[(8-quinolinylimino)methyl]phenol) and [Fe(pap)2](+) (Hpap = 2-(2-pyridylmethyleneamino)phenol) as test cases comparing the B3LYP* results to experimental information and to multiconfigurational wave function results. In addition to rather accurate high spin (HS) and low spin (LS) state geometries, B3LYP* also predicts ligand-to-metal charge transfer (LMCT) states with large oscillator strength in the energy range where the UV-VIS spectrum shows an intense absorption band, whereas optically allowed π-π* excitations on the ligands were calculated at higher energy. Subsequently, we have generated a two-dimensional potential energy surface of the HS and LS states varying the Fe-N and Fe-O distances. LMCT and metal centered (MC) excited states were followed along the approximate minimal energy path that connects the minima of the HS and LS on this surface. The (2)LMCT state has a minimum in the same region as the initial LS state, where we also observe a crossing with the intermediate spin (IS) state. Upon the expansion of the coordination sphere of the Fe(III) ion, the IS state crosses with the HS state and further expansion of the coordination sphere leads to the excited spin state trapping as observed in experiment. The calculation of the intersystem crossing rates reveals that the deactivation from (2)LMCT → IS → HS competes with the (2)LMCT → IS → LS pathway, in line with the low efficiency encountered in experiments.
منابع مشابه
Multiscale Experimental and Theoretical Investigations of Spin Crossover FeII Complexes: Examples of [Fe(phen)2(NCS)2] and [Fe(PM-BiA)2(NCS)2]
For spin crossover (SCO) complexes, computation results are reported and confirmed with experiments at multiscale levels of the isolated molecule and extended solid on the one hand and theory on the other hand. The SCO phenomenon which characterizes organometallics based on divalent iron in an octahedral FeN6-like environment with high spin (HS) and low spin (LS) states involves the LS/HS switc...
متن کاملComparison of structural dynamics and coherence of d–d and MLCT light-induced spin state trapping† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc05624e Click here for additional data file.
Light-induced excited spin state trapping (LIESST) in Fe spin-crossover systems is a process that involves the switching of molecules from low (LS, S 1⁄4 0) to high spin (HS, S 1⁄4 2) states. The direct LS-to-HS conversion is forbidden by selection rules, and LIESST involves intermediate states such as MLCT or T. The intersystem crossing sequence results in an HS state, structurally trapped by ...
متن کامل5-Aminotetrazole induces spin crossover in iron(III) pentadentate Schiff base complexes: experimental and theoretical investigations.
A series of novel mononuclear iron(III) complexes [Fe(saldpt)(atz)] (1) and [Fe(Rsalpet)(atz)] (2a-d) involving 5-aminotetrazole (Hatz) and pentadentate Schiff base ligands (H2saldpt = N,N'-bis(2-hydroxybenzyliden)-1,7-diamino-4-azaheptane, H2salpet = N,N'-bis(2-hydroxybenzyliden)-1,6-diamino-3-azahexane, H25Cl-salpet = N,N'-bis(5-chloro-2-hydroxybenzylidene)-1,6-diamino-3-azahexane, H25Br-salp...
متن کاملTheoretical Investigation of the Electronic Structure of Fe(II) Complexes at Spin-State Transitions
The electronic structure relevant to low spin (LS)↔high spin (HS) transitions in Fe(II) coordination compounds with a FeN6 core are studied. The selected [Fe(tz)6]2+ (1) (tz = 1H-tetrazole), [Fe(bipy)3]2+ (2) (bipy = 2,2'-bipyridine), and [Fe(terpy)2]2+ (3) (terpy = 2,2':6',2″-terpyridine) complexes have been actively studied experimentally, and with their respective mono-, bi-, and tridentate ...
متن کاملThermal and light induced polymorphism in iron(II) spin crossover compounds.
The spin crossover complexes [Fe[H(2)B(pz)(2)](2)L]([H(2)B(pz)(2)](-)= dihydrobis(pyrazolyl)borate, L = 2,2[prime or minute]-bipyridine (1), bipy and 1,10-phenanthroline, phen (2)) undergo both thermal and light induced spin crossover, but the structure of the low spin and light induced high spin states for are different from that of the thermally induced high spin state and from those of.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 18 2 شماره
صفحات -
تاریخ انتشار 2016